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Abstract 
Structured representations of clinical data can support computational analysis of individuals and cohorts, 
and ontologies representing disease entities and phenotypic abnormalities are now commonly used for 
translational research. The Medical Action Ontology (MAxO) provides a computational representation of 
treatments and other actions taken for the clinical management of patients. Currently, manual biocuration 
is used to assign MAxO terms to rare diseases, enabling clinical management of rare diseases to be 
described computationally for use in clinical decision support and mechanism discovery. However, it is 
challenging to scale manual curation to comprehensively capture information about medical actions for 
the more than 10,000 rare diseases. 

We present AutoMAxO, a semi-automated workflow that leverages Large Language Models (LLMs) to 
streamline MAxO biocuration for rare diseases. AutoMAxO first uses LLMs to retrieve candidate 
curations from abstracts of relevant publications. Next, the candidate curations are matched to ontology 
terms from MAxO, Human Phenotype Ontology (HPO), and MONDO disease ontology via a 
combination of LLMs and post-processing techniques. Finally, the matched terms are presented in a 
structured form to a human curator for approval. We used this approach to process 4,918 unique medical 
abstracts and identified annotations for 21 rare genetic diseases, we extracted 18,631 candidate disease-
treatment curations, 538 of which were confirmed and transferred to the MAxO annotation dataset.  
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The results of this project underscore the potential of generative AI to accelerate precision medicine by 
enabling a robust and comprehensive curation of the primary literature to represent information about 
diseases and procedures in a structured fashion. Although we focused on MAxO in this project, similar 
approaches could be taken for other biomedical curation tasks. 

 

 

Introduction 
Rare diseases present significant challenges in healthcare due to their low prevalence and high 
complexity. While individual rare diseases have low prevalence, collectively they affect approximately 
one in ten Americans and nearly 300 million people globally (1). Most rare conditions are difficult to 
diagnose, with many patients waiting years for accurate diagnosis. Despite over 10,000 rare diseases 
having been identified, fewer than 5% have FDA-approved treatments (2,3). Clinicians and researchers 
depend on various resources such as GeneReviews, primary literature, clinical trial databases, and other 
published medical literature to identify potential treatments. These resources, however, present a 
disjointed landscape that can be burdensome to navigate effectively. Biomedical ontologies are structured 
frameworks that categorize medical concepts to enable sophisticated searching and algorithmic analysis, 
and can thereby support clinicians and researchers in finding relevant information. 
 
Large language models (LLMs) are advanced AI models trained on extensive text data to interpret and 
generate human language. These models use deep learning techniques to produce contextually relevant 
and coherent text, demonstrating versatility in translation, summarization, and question-answering tasks. 
LLMs have been applied to numerous medical domains (4). Biocuration, the process of collecting, 
organizing, and annotating biological data, ensures the accuracy and usefulness of information for 
research and clinical applications. In the realm of biological research, accurate data curation is crucial for 
meaningful scientific advancements. Biocurators manually review literature and databases to extract data 
about genes, proteins, diseases, and phenotypes, organizing it into structured ontologies (5).  However, 
biocuration requires significant human effort, highlighting the need for automated solutions to enhance 
efficiency in biocuration (6). 
 
To reduce the workload of manual curators, various efforts have developed methods for completing 
information extraction tasks with LLMs. Agarwal et al. found that OpenAI’s GPT-3 model could 
accurately complete specific extraction tasks, such as abbreviation expansion and medication attribute 
extraction, from clinical text with no specific training. They also found that prompts directing the LLM to 
yield a specific output structure improved performance in resolving results (7). Since that time, 
information extraction researchers have assembled both new benchmark sets (e.g., MultiMedQA (4), 
BioLLMBench (8)) and domain-adapted models (e.g., Med-PaLM (4), Med-MLLM (9), BioMistral (10)) 
to extract an increasingly broad range of data elements from medical text. SPIRES (Structured Prompt 
Interrogation and Recursive Extraction of Semantics) (11) is a knowledge extraction method that 
leverages both LLMs and ontologies. SPIRES uses knowledge schemas defined using LinkML (12) to 
extract entities and relationships from text. Since each schema encapsulates specific domain concepts, 
relationships, and properties, it can be used to craft more effective prompts for LLMs, therefore obtaining 
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reliable annotations in the form of textual elements. A key aspect of SPIRES' effectiveness is its ability to 
ground these textual elements as concepts derived from ontologies (i.e., to identify ontology terms that 
match the concepts identified by the LLM), including Open Biological and Biomedical Ontologies (OBO) 
Foundry ontologies (13). 
 
The Medical Action Ontology (MAxO) provides a computational representation of medical diagnostics, 
preventions, procedures, interventions, and therapies. MAxO follows OBO standards, with terms having 
unique identifiers, names/labels definitions, in addition to computational logical definitions, and synonyms that 
can be used for NLP applications.  A medical action is broadly regarded as any medical procedure, 
intervention, therapy, and or measurement undertaken for clinical management. The structure of MAxO is 
composed of six upper-level terms, viz., diagnostic procedure, preventative therapy, therapeutic 
procedure, medical action avoidance, palliative care, and complementary, and alternative medical therapy 
(14). Currently, MAxO includes 1,902 medical action terms, curated through manual and semi-automated 
methods. MAxO is compatible with other ontologies within the OBO Foundry (13), enhancing the ability 
to model diseases and phenotypic features comprehensively. It provides a computational representation of 
treatments and actions for clinical patient management and is integrated with the Mondo Disease 
Ontology (Mondo) and the Human Phenotype Ontology (HPO), broadening the scope of computational 

disease modeling of rare diseases (14). 

Like many ontologies, in OBO, MAxO is used for the annotation of knowledge curated from the 
literature. The MAxO annotation model is designed to systematically describe medical actions and their 
relationships to diseases and phenotypic features. It enables a structured and interoperable way to 
represent clinical interventions and management strategies within biomedical research and healthcare by 
capturing relationships between disease, phenotypes, and medical action. The core MAxO annotation 
model relates medical actions to phenotypes in the context of a disease For example: 
 

Medical Action: copper chelator agent therapy [MAXO:0001224] 
Relationship: PREVENTS 
Phenotype: Cirrhosis [HP:0001394] 
Disease: Wilson disease Anemia [MONDO:0010200] 

 
Identifiers are used for all concepts to avoid ambiguity. MAxO annotations are disease-specific. In this 
example, copper chelator agent therapy is indicated to prevent Cirrhosis in the context of Wilson disease 
Anemia. However, copper chelator agent therapy [MAXO:0001224] would not be indicated in other 
diseases characterized by Cirrhosis [HP:0001394], such as Hepatitis C [MONDO:0005231],  Primary 
Biliary Cholangitis [MONDO:0005388] or Alcoholic Liver Disease [MONDO:0043693] 
 
Additional examples of MAxO annotations are provided in Table 1. Not shown here, but the model also 
allows for the specification of full provenance and evidence, including the publication from which the 
annotation was derived from. The current source of truth for MAxO annotations is a tabular file 
maintained on GitHub (https://github.com/monarch-initiative/maxo-annotations). 
The MAxO annotation model is currently being mapped to the Biolink Model, to allow for inclusion into 
Knowledge Graphs (KG), such as the NCATS Translator KG, Monarch KG, and KG-Hub, and to allow 
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graph machine learning methods such as link prediction to apply to these data using software such as 
GRAPE.  
 
Currently, MAxO annotation is a manual process, involving an expert curator selecting and carefully 
reading relevant papers and manually entering annotations via a specialized tool. We present AutoMAxO, 
a semi-automated workflow that leverages LLMs and SPIRES to assist with the annotation and update of 
the MAxO ontology for rare diseases. 
 

Methodology 

Automated retrieval of relevant text  
To automatically mine the relevant literature from PubMed, AutoMAxO either uses a list of PubMed 
identifiers (PMID) representing published articles selected by the users or exploits a selection of  MeSH 
codes representing diseases of interest and then employs the NCBI E-Utilities API (15) to gather PubMed 
IDs of peer-reviewed articles focused on these diseases. By using specific search criteria, the user may 
tailor the search to, for example, retrieve articles related to potential therapies, use disease keywords and 
MeSH tree mappings to filter the results or provide a maximum number of papers to be retrieved, or 
prioritize the retrieval of publications that are within time-ranges or being the most relevant (highly cited). 
The user specifies the number of articles to retrieve. To avoid duplication, AutoMAxO first checks the 
existing directory to see if any articles have already been retrieved. Then, it retrieves the exact number of 
additional articles specified by the user. Once the maximum number of articles available has been 
reached, the number of articles saved is less than what the user desired, which means the articles relevant 
to the particular disease and the keywords mentioned above have reached the maximum.   
 
After retrieving relevant PubMed IDs from E-Utilities that were not extracted before, AutoMAxO uses 
PubTator 3.0 API to retrieve titles and abstracts that correspond to the PubMed IDs (16). AutoMAxO 
saves the texts in a comma-separated values (CSV) file, to be used as input for the next step of LLM-
driven parsing.  
 
Structured prompt interrogation and recursive extraction of semantics (SPIRES) 
For extracting structured information from the text, we utilized OntoGPT Version 0.3.9, a Python package 
we developed for parsing text with large language models (LLMs), using instruction prompts and 
ontology-based grounding. Within OntoGPT, we used GPT-4 model version  ‘gpt-4-0125-preview’ to 
extract annotations related to medical actions, relationships with diseases, and phenotypes. OntoGPT 
implements SPIRES (11), which incorporates a schema and ontology-driven extraction of annotations 
from text. In this process, using our MAxO schema (https://github.com/monarch-
initiative/automaxo/blob/main/src/automaxo/maxo_template.yaml), OntoGPT generates candidate 
annotations consisting of five elements: subjects (medical actions), predicates (relationships), objects 
(phenotypes), qualifiers (diseases), and subject extensions (chemical entities). The title and abstract of 
each article were used as separate inputs for OntoGPT and the extracted data were saved in YAML 
format. This YAML contains objects conforming to the AutoMAxO schema, using term identifiers from 
relevant ontologies. Where OntoGPT cannot ground terms in ontologies, it makes placeholder terms (i.e., 
it reports words or phrases that might correspond to a term from the corresponding target ontology; the 
curator can replace the placeholder with the term, if one exists, or create a new term request for a concept 
that is not currently represented in the ontology). 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 22, 2024. ; https://doi.org/10.1101/2024.08.22.24310814doi: medRxiv preprint 

https://doi.org/10.1101/2024.08.22.24310814
http://creativecommons.org/licenses/by/4.0/


5 

 
Each file is further post-processed to identify close lexical matches between extracted terms and those in 
MAxO. Through the post-processing, we also use the annotation feature of the Ontology-Access Kit 
(OAK) to match the subset of terms that were not already grounded with the existing ontologies using 
lexical matching of characters and words. For example, OntoGPT may identify allogeneic bone marrow 
transplantation as a potential MAxO term, but this term has no exact match within MAxO. OAK locates 
two potential MAxO terms related to the extracted annotation: MAxO:0010030 (bone marrow 
transplantation) and MAxO:0000068 (transplantation). These are broader than the concepts needed to 
fully capture the annotation, but they are valid for use. 
 
After further grounding and identifying potential ontology terms, AutoMAxO combines and groups all 
extracted annotations, ranking them by their frequency of occurrence. For each annotation, AutoMAxO 
records literature evidence, including PubMed IDs and relevant text excerpts from which the annotations 
were extracted. All results are saved in a JSON file that can be used by curation tools. By default, 
AutoMAxO stores result in a folder called “data”, and 20 such folders are included in the GitHub 
repository as examples. A subfolder is created for each analyzed disease. For instance, one of the 
subfolders is called alkaptonuria. Each disease folder contains several files created by AutoMAxO. The 
file called “final_automaxo_results.json” in each disease folder is the one that should be used for curation 
tools. 
 
Automaxoviewer 
We created a JavaFX graphical user interface (GUI)-based tool called Automaxoviewer that presents the 
results of AutoMAxO (from the final_automaxo_results.json file) in tabular form and provides 
autocomplete and various other functions for a curator to validate and if needed correct or extend the 
results of AutoMAxO.  
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Figure 1. Screenshot of the Automaxoviewer application used to screen the results from AutoMAxO. The 
last author (PNR; board-certified pediatrician with Habilitation in human genetics) reviewed candidate 
annotations for relevance and medical correctness. 
 
For instance, if AutoMAxO is not able to ground a term and provide an exact ontology term, but instead 
returns a lexical variant (e.g., “liver transpl.” instead of liver transplantation [MAxO:0001175]), the 
curator can use the autocomplete functionality to assign the MAxO term.  
After careful vetting, the annotation can be directly added to the main MAxO annotation database on 
GitHub. The Automaxoviewer code is freely available on GitHub under a GNU General Public License 
version 3 open-source license at https://github.com/monarch-initiative/automaxoviewer, 
 
 

Results 
AutoMAxO is an approach towards streamlining the curation of treatments and other medical actions in 
the medical literature about rare diseases. AutoMAxO first collects candidate abstracts from PubMed, 
then it leverages OntoGPT to extract structured information from each abstract with GPT-4. This 
information is further processed to identify ontology term identifiers for the concepts (“grounding”) and 
to output a JSON file with the results. Finally, candidate annotations are presented to a domain expert for 
vetting (Figure 2). 
 

6 
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Figure 2: Workflow Diagram for AutoMAxO Project: This diagram illustrates the step-by-step process 
of the AutoMAxO project, from selecting rare diseases and collecting data to processing, validating, and 
integrating data into the MAxO database for enhancing rare disease treatment. 
 
AutoMAxO was evaluated on 21 rare genetic diseases that were randomly selected, and 4,918 abstracts 
were retrieved and passed to OntoGPT for further processing. AutoMAxO proposed 18,631 unique 
candidate annotations, which were summarized and provided to MAxO curators for review to update the 
MAxO database. The candidates were reviewed using Automaxoviewer, and annotations were confirmed 
if they described case reports, cohort reports, clinical studies, or reviews about medical actions applied to 
individuals with the disease in question. Articles that described other aspects of the diseases, such as 
genetic studies, molecular mechanisms, or animal models, were excluded, as were retrieved candidates 
that did not specifically discuss the target disease. This enabled a total of 538 novel annotations to be 
confirmed for a total of 21 rare diseases. A summary of the new annotations is provided in Table 1, and a 
full list is available as Supplemental File 1. The annotations have additionally been added to the MAxO 
annotation GitHub repository for download. 

 
 
 
 

MONDO 
Annotat
ions MAxO (n) HPO (n) Example MAxO 

Example 
relation Example HPO 

Achondroplasia 
(MONDO:0007037) 2 1 1 

human growth hormone 
replacement therapy 
(MAXO:0000780) prevents Short stature (HP:0004322) 

alkaptonuria 
(MONDO:0008753) 13 7 6 

pharmacotherapy 
(MAXO:0000058) treats 

Elevated urinary 
homogentisic acid 
(HP:0033704) 

Apert syndrome 
(MONDO:0007041) 24 11 15 

airway management 
(MAXO:0000500) treats 

Apert syndrome 
(MONDO:0007041) 
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Brugada syndrome 
(MONDO:0015263) 10 3 6 

ablation therapy 
(MAXO:0000452) prevents 

Ventricular arrhythmia 
(HP:0004308) 

Camurati-Engelmann 
disease 
(MONDO:0007542) 10 7 5 

corticosteroid agent therapy 
(MAXO:0000640) treats Bone pain (HP:0002653) 

Canavan disease 
(MONDO:0010079) 8 4 4 

gene therapy 
(MAXO:0001001) treats 

Canavan disease 
(MONDO:0010079) 

celiac disease 
(MONDO:0005130) 67 1 8 

dietary gluten intake 
avoidance 
(MAXO:0010000) prevents 

celiac disease 
(MONDO:0005130) 

Chediak-Higashi 
syndrome 
(MONDO:0008963) 17 3 2 

allogeneic hematopoietic 
stem cell transplantation 
(MAXO:0001479) treats 

Chediak-Higashi syndrome 
(MONDO:0008963) 

citrullinemia, type II, 
adult-onset 
(MONDO:0011326) 14 5 3 

carbohydrate-restricted diet 
intake (MAXO:0000771) treats 

Hepatic encephalopathy 
(HP:0002480) 

Donnai-Barrow 
syndrome 
(MONDO:0009104) 8 7 8 

surgical procedure 
(MAXO:0000004) treats 

Congenital diaphragmatic 
hernia (HP:0000776) 

Huntington disease 
(MONDO:0007739) 46 22 16 

palliative care 
(MAXO:0000021) treats 

Huntington disease 
(MONDO:0007739) 

hypochondroplasia 
(MONDO:0007793) 4 3 3 

human growth hormone 
replacement therapy 
(MAXO:0000780) treats Short stature (HP:0004322) 

Lesch-Nyhan syndrome 
(MONDO:0010298) 21 9 9 

umbilical cord blood 
transplantation 
(MAXO:0010033) treats 

Lesch-Nyhan syndrome 
(MONDO:0010298) 

Loeys-Dietz syndrome 
(MONDO:0018954) 20 11 15 

gastrostomy 
(MAXO:0001346) treats 

Failure to thrive 
(HP:0001508) 

lymphatic malformation 
1 (MONDO:0007919) 1 1 1 

physical therapy 
(MAXO:0000011) treats 

Lymphedema 
(HP:0001004) 
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Marfan syndrome 
(MONDO:0007947) 44 17 18 

angiotensin receptor 
blocker therapy 
(MAXO:0000653) prevents 

Aortic root aneurysm 
(HP:0002616) 

Noonan syndrome 
(MONDO:0018997) 31 17 22 

behavioral dietary 
intervention 
(MAXO:0000884) treats 

Gastroparesis 
(HP:0002578) 

propionic acidemia 
(MONDO:0011628) 22 8 4 

pharmacotherapy 
(MAXO:0000058) treats 

Acute hyperammonemia 
(HP:0008281) 

sickle cell anemia 
(MONDO:0011382) 117 31 21 

gene therapy 
(MAXO:0001001) treats 

sickle cell anemia 
(MONDO:0011382) 

Stickler syndrome 
(MONDO:0019354) 11 6 5 

vitrectomy 
(MAXO:0001085) treats 

Rhegmatogenous retinal 
detachment (HP:0012230) 

Wilson disease 
(MONDO:0010200) 48 9 16 

liver transplantation 
(MAXO:0001175) treats 

Hepatic failure 
(HP:0001399) 

 
Table 1 . Summary of the counts of novel annotations derived with automaxo. 538 novel annotations 
were obtained for a total of 21 diseases that involved a total of 152 unique HPO terms and 114 unique 
MAxO terms. One example annotation is shown for each disease. 
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Figure 3: This figure summarizes the annotations extracted from 4,918 PubMed entries by the 
AutoMAxO tool. It presents the counts of Distinct Annotations (all terms identified at least once), 
Grounded Annotations (all entities extracted from the text and successfully mapped to a MAxO, HPO, or 
MONDO identifier), Possible Annotation Matches (all entities extracted from the text and with a 
predicted mapping to an ontology identifier based on lexical similarity), and Unmatched Annotations (all 
medical actions identified by the LLM but unable to be mapped to an ontology term) for MAxO, HPO, or 
MONDO. 
 
 
 

Discussion 

In this work, we have presented an LLM-based approach to accelerate curation using three current bio-
ontologies: MAxO, HPO, and MONDO. AutoMAxO automates several curation tasks that would 
otherwise be time-consuming and labor-intensive for manual curators, such as identifying abstracts to 
curate and suggesting relevant ontology terms. AutoMAxO successfully extracted a total of  18,631  
unique annotations for 21 rare genetic diseases. 

We have currently implemented AutoMAxO to emphasize recall over precision. Many of the returned 
abstracts are related to the disease but do not represent reports of medical actions. For instance, some 
returned abstracts described research with model organisms, genetic diagnostics, or other topics (Figure 
3). Using AutoMAxO Viewer, it is straightforward to scan the title and abstract text to skip such entries. 
We are currently testing machine-learning approaches to filter the abstracts to improve precision. In some 
cases, abstracts could not be annotated because a MAxO term was lacking. In this case, AutoMAxO 

10 

 

or 
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Viewer automatically generates text for a new term request and opens the MAxO issues page in GitHub 
to streamline the process. 

The June 2023 release of the existing MAxO annotation database included 1,757 MAxO terms,(14) 
18,490 HPO terms, and 411 MONDO terms. AutoMAxO significantly enhanced the speed and efficiency 
of the curation process. With just 21 sample diseases analyzed in our study, we curated 538 new 
annotations with AutoMAxO and merged them with our existing MAxO annotation files.  Although it is 
challenging to objectively compare the time required for each annotation, our previous efforts resulted in 
438 annotations over a five-year period for the MAxO resource, primarily through a manual process 
performed by curators, which was time-consuming. In contrast, with AutoMAxO, the annotation of each 
disease was completed in approximately one to two hours. This remarkable improvement underscores the 
potential of leveraging LLMs to streamline and expedite the curation process. 

AutoMAxO integrates LLMs and advanced search technologies to automate the annotation and updating 
of medical ontologies. Existing models such as BioBERT(17) support NLP and curation methods for 
specific tasks like Named Entity Recognition (NER) and relationship extraction, but they generally need 
extensive training data to extract medical actions. We are not aware of any other tools currently available 
tool that specifically retrieves concepts from multiple ontologies (here, MAxO, Mondo, and HPO) that 
are related by multiple rules (in MAxO, treatments are related to phenotypic features and diseases by the 
relations treats, prevents, investigates, contraindicated, and lack of observed response). 

Additionally, with minimal configuration, AutoMAxO can extract annotations from custom texts, 
including full PubMed Central texts, websites, or other text collections. AutoMAxO's ability to access the 
latest research literature to extract annotations using ontologies ensures that medical data remains up-to-
date, supporting more effective and targeted patient care. A similar approach could be applied to other 
curation tasks in biomedicine or other fields by adapting the SPIRES template file that specifies the 
schema with ontology terms and relations.  
 

Conclusion 
In this study, we describe and evaluate AutoMAxO, a workflow for annotating published reports of 
treatments and other medical actions for rare diseases. AutoMAxO streamlines several time-consuming 
steps in the process of curation and has enabled us to double the number of annotations for disease-
specific MAxO annotations.   
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Code availability 
The source code for AutoMAxO is available on GitHub at: https://github.com/monarch-
initiative/automaxo.  
Documentation for AutoMAxO is available here: 
https://monarch-initiative.github.io/automaxo/  
The source code for the AutoMAxO Viewer is available on GitHub at: https://github.com/monarch-
initiative/automaxoviewer 
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