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ABSTRACT

Background and Objectives Several computational pipelines for biomedical data have been proposed to
stratify patients and to predict their prognosis through survival analysis. However, these analyses are usually
performed independently, without integrating the information derived from each of them. Clustering of survival
data is an underexplored problem, and current approaches are limited for biomedical applications, whose data
are usually heterogeneous and multimodal, with poor scalability for high-dimensionality.

Methods We introduce VAE-Surv, a multimodal computational framework for patients’ stratification and prog-
nosis prediction. VAE-Surv integrates a Variational Autoencoder (VAE), which reduces the high-dimensional
space characterizing the molecular data, with a deep survival model, which combines the embedded informa-
tion with the clinical features. The VAE embedding step prioritizes local coherence within the feature space
to detect potential nonlinear relationships among the molecular markers. The latent representation is then
exploited to perform K-means clustering. To test the clinical robustness of the algorithm, VAE-Surv was applied
to the Genomed4all cohort of Myelodysplastic Syndromes (MDS), comparing the identified subtypes with the
World Health Organization (WHO) classification. The survival outcome was compared with the state-of-the-art
Cox model and its penalized versions. Finally, to assess the generalizability of the results, the method was also
validated on an external MDS cohort.

Results Tested on 2,043 patients in the GenomMed4All cohort, VAE-Surv achieved a median C-index of
0.78, outperforming classical approaches. In addition, the latent space enhanced the clustering performance
compared to a traditional approach that applies the clustering directly to the input data. Compared to the
WHO 2016 MDS subtypes, the analysis of the identified clusters showed that the proposed framework can
capture existing clinical categorizations while also suggesting novel, data-driven patient groups. Even tested
in an external MDS cohort of 2,384 patients, VAE-Surv achieved a good prediction performance (median
C-index=0.74), preserving the interpretability of the main clinical and genetic features.

Conclusions VAE-Surv enables automatic identification of patients’ clusters, while outperforming the tradi-
tional CoxPH model in survival prediction tasks at the same time. Applied to MDS use case, the obtained
genetic-based clusters exhibit a clear survival stratification, and the application of the clinical information
allowed high performance in prognosis prediction.
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C. Rollo et al.
1. Introduction

Survival analysis is one of the most used approaches in clinical
prognostic investigations, aiming to predict the time to an event,
such as death or the progression of a disease. A key aspect of this
analysis is the presence of censored data, indicating that the event of
interest did not occur during the study, therefore requiring the use
of specialized statistical methods. Traditionally, the Cox proportional
hazards model (CoxPH) [1] has been the most widely used technique
to analyze censored data, but it was designed for small data sets and
does not scale well to high dimensions. In addition, most of the state-
of-the-art methods assume only linear relationships among covariates.
Recently, several machine learning (ML) algorithms have been adapted
to work with censored data and can give more accurate results than
traditional statistical methods since they are able to consider nonlinear
relationships among the features [2].

Another main goal in clinical studies when censored data are an-
alyzed is disease subtyping through risk stratification of patients. To
address this task, cluster analysis of survival data can identify similar
groups of patients in time-to-event distributions, in order to enhance
a precision medicine approach for clinical decision-making. So far,
only a few approaches have been suggested to cluster patients ac-
cording to their survival function, yet this topic is beginning to gain
increased attention. Liverani et al. proposed a Dirichlet process mixture
model with cluster-specific parameters for the Weibull distribution,
addressing cases where it is difficult to apply usual survival models
due to multicollinearity [3]. Chapfuwa et al. proposed a Bayesian
non-parametric time-to-event approach with structured latent represen-
tations that can be clustered through a prior for infinite mixture of
distributions [4]. However, it is difficult to transfer these approaches
to medical studies when multiple types of data are available (omics,
clinical, imaging, etc.), which are often high-dimensional, heteroge-
neous and with missing information, representing challenges to current
statistical methods.

Recent research has shown that the integration of multiple sources
of data (e.g. clinical, genomic data) leads to better prediction of the
prognostic risk than the use of a single source [5]. In this context,
some studies proved the effectiveness of Autoencoder architectures in
integrating clinical and multiomics data, exploiting the learned latent
representations to predict the outcomes of interest [6-8]. Kim et al. [9]
applied a Variational Autoencoder (VAE) model to pan-cancer RNA-seq
gene expression data from TCGA, combined through a transfer learning
setting with a neural network for survival analysis. However, the
authors focused the approach on the risk prediction, without exploiting
the latent features obtained by the autoencoder and without integrating
the clinical variables. In the work by Hira et al. [10] instead, multiple
VAEs were used to integrate RNA-seq, CNVs and DNA-methylaytion
data in the context of ovarian cancer, identifying disease subtypes
through a classification schema applied to the latent features. This
approach optimizes a combined loss that accounts for both the VAE
reconstruction and the classification task. The latent features were also
used to provide a stratification of the patients. However, the authors
focused their approach on the classification task and performed linear
CoxPH survival predictions to each classified subgroup only a posteriori.

In this study, we propose VAE-Surv, a computational framework
based on a VAE with the aim to both stratify the patients and as-
sess their prognostic risk by optimizing both data reconstruction and
the survival prediction task. Specifically, the framework integrates
genetic, cytogenetic and clinical features to uncover novel insights into
genetic-based prognostic risk predictions. To show the robustness of our
approach, we focused our application on the prognosis prediction of
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Myelodysplastic Syndromes (MDS), which represent a heterogeneous
group of clonal hematopoietic stem cell disorders characterized by
ineffective hematopoiesis. These syndromes predominantly affect el-
derly populations and manifest as bone marrow failure, leading to
varying degrees of cytopenia (low blood cell counts) in one or more
myeloid lineages. Additionally, MDS has a substantial risk of progres-
sion to Acute Myeloid Leukemia (AML). From a genetic standpoint,
MDS showcases an intricate mutational landscape with numerous ge-
netic abnormalities, including point mutations, chromosomal deletions,
and translocations [11-13]. Although these mutations contribute to
the onset and progression of the disease, their predictive utility for
treatment response remains a topic of ongoing research. The current
WHO 2016 classification of MDS patients [14], which is based on mor-
phological, clinical, and genetic features, cannot fully encapsulate the
complex genetic and cytogenetic landscape of this disorder, limiting the
granularity of the patients’ stratification [15,16] and the therapeutic
options, which require personalized approaches [17].

Here, we will apply VAE-surv to two of the largest cohorts of MDS
patients currently available (2,043 patients from Genomed4all MDS
cohort [16] and 2,384 patients from the International Working Group
for the study of Prognosis in MDS cohort [18]) to demonstrate that
this computational model both provides clinically valid stratification
of different MDS subtypes and achieves high accuracy in predicting
patients’ survival.

2. Materials and methods
2.1. Datasets

The proposed framework was built considering an international
retrospective cohort of 2,043 MDS patients, available through the
GenoMed4All consortium [16,19,20]. The study included patients di-
agnosed with MDS based on the 2016 WHO classification criteria.
Laboratory and clinical data were collected at diagnosis or within six
months of diagnosis for consistency. DNA sequencing was performed in
bone marrow mononuclear cells or peripheral blood granulocytes, en-
suring robust genomic profiling. Patients with therapy-related myeloid
neoplasms, paroxysmal nocturnal hemoglobinuria, aplastic anemia, or
MDS/myeloproliferative neoplasm with ring sideroblasts and throm-
bocytosis were excluded, as described in Supplementary File 2 of
Bersanelli et al. study [15]. The dataset collects clinical, demographic
and molecular features (a selected panel of 58 genetic and cytogenetic
mutations deemed relevant for MDS). Demographic and clinical covari-
ates include age of diagnosis (AOD), gender, neutrophils, hemoglobin,
platelets, and bone marrow blasts (BMB). At diagnosis, cytogenetic
analysis was performed using standard G-banding, and karyotypes were
classified using the International System for Cytogenetic Nomenclature
Criteria. Mutational screening of 46 genes related to myeloid neoplasms
was performed on DNA from peripheral blood granulocytes or bone
marrow mononuclear cells. Overall survival was considered as the
outcome of interest for our analyses. Both survival time and censoring
status were available for each patient (71% censoring rate). Further
details are reported in Bersanelli et al. [15].

In order to assess the generalizability of the results, the model was
also validated on an external cohort of 2,384 MDS patients, provided
by the International Working Group for the study of Prognosis in MDS
(IWG-PM) [18]. The inclusion criteria for this cohort were: age of
diagnosis > 18 years, a diagnosis of MDS according to WHO 2016
criteria and information available on demographics, clinical features,
mutational screening/chromosomal abnormalities, treatment and over-
all survival. A comparison between IWG-PM and Genomed4all cohorts
is provided in Supplementary Material, Section 1.
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Fig. 1. Schematic representation of the VAE-Surv computational framework. Genetic and cytogenetic markers are treated as binary input vectors of a Variational Autoencoder
(VAE) for dimensionality reduction. The latent feature space, obtained by the VAE, is concatenated with clinical variables to form an enriched feature set. This combined feature
set is then exploited by a deep learning generalization of the Cox proportional hazards (DeepSurv) model for survival risk prediction. The dimensionality of the latent space z is

optimized as a hyperparameter of the framework.

2.2. Model architecture

A schematic representation of the framework is presented in Fig. 1.
The core of the computational approach is a Variational Autoencoder
(VAE) [21], designed to intake genetic and cytogenetic markers as
binary vectors (presence/absence of mutations and abnormalities). The
goal of the VAE is to reduce the sparse and high-dimensional genetic-
based input space into a latent feature space at lower dimensionality.
This latent representation is then concatenated with the patients’ clin-
ical variables to generate an enriched feature set. A deep learning
generalization of the Cox proportional hazards (DeepSurv [22]) model
is applied to this enriched feature set for a survival analysis task.

In conventional VAE architectures, a loss function often includes
both a reconstruction term £L,,.,, and a Kullback-Leibler divergence
term:

Lyag(0, ¢;x) = Lecon + KL-term
=By, [logps(x | 2)] = Dp (44(z 1 ) || p(2)) -

where p,(x | z) is the decoder parametrized by the weights of the
neural network 6, g4(z | x) approximates the posterior distribution
of the latent variables (encoder parametrized by ¢) and p(z) is the
prior distribution over the latent variables assumed to be Gaussian
(z ~ p(z) = N(O,I)). Typically, the KL-term regularizes the latent
space by encouraging q,(z | x) to adhere closely to the Gaussian
prior. This allows the model to learn a smooth and continuous latent
space, which is particularly beneficial for generative tasks. However,
in our approach, we experiment a removal of the KL-term from the
loss function. This decision is motivated by the fact that we are not
primarily interested in the generative capabilities of the model or in
ensuring that the latent space adheres to a predefined Gaussian prior.
Instead, our focus is on learning compact representations of the genetic
input, with a particular emphasis on enabling the latent space to exhibit

clustered structures. Moreover, by removing the KL divergence, we
prevent the phenomenon of posterior collapse [23], where the learned
posterior distribution ¢(z | x) becomes overly similar to the prior
distribution p(z), effectively ignoring the input x. Therefore, the risk
is that the latent variables z become uninformative, and the decoder
almost entirely relies on its learned capacity to reconstruct x without
using the latent representation.

The VAE was initially pretrained separately from DeepSurv model,
with the aim of minimizing the reconstruction error through a logcosh
loss function over a predefined number of epochs. Once a stable la-
tent feature representation was obtained, the VAE’s parameters were
frozen. After the VAE pretraining, DeepSurv model was fine-tuned
considering as input feature set the frozen latent representation from
the VAE concatenated with the clinical variables, in order to predict
the survival risk. Hyperparameters were optimized through a 10-fold
cross-validation scheme stratified by censoring indicator, using the
Concordance Index (C-Index), a widely used ranking metric that quan-
tifies the model’s ability to correctly order survival times [24]. C-Index
ranges from zero to one, with a value of 0.5 corresponding to the
performance of a random ranking and 1 to perfect discrimination.
We compared the performance of our VAE-Surv framework against
baseline linear Cox Proportional Hazards (CoxPH) regression models,
which do not exploit latent feature extraction, and against the Survival
Cluster Analysis (SCA) nonlinear method [4], using the median C-Index
obtained across a 10-fold cross-validation as the principal performance
metric. Specifically, CoxPH models were implemented with various
regularization strategies, including no regularization, Lasso (L1), Ridge
(L2), and ElasticNet penalties [25]. Regularization is a method for
preventing overfitting by controlling the model complexity. It accom-
plishes this by penalizing the coefficients of predictors that do not
provide meaningful information to the model. Lasso penalization allows
for the generation of a sparse model (setting unimportant covariates to



C. Rollo et al.

0), while Ridge penalization avoids the feature selection set by Lasso by
encouraging a grouping effect of the covariates used in the model. Fi-
nally, Cox regression combined with ElasticNet penalization combines
both Lasso and Ridge penalty terms to identify the more representative
covariates in each group that contribute most to modeling the outcome.
On the other hand, SCA is a Bayesian non-parametric approach that
represents the patients in a clustered latent space and encourages latent
representations to behave as a mixture of distributions, following a
Dirichlet Process structure via a distribution matching approach, to
provide clusters (subpopulations of patients) with distinct risk profiles.

2.3. Post-training analysis

Once the best set of hyperparameters had been selected (see Sec-
tion 2 of the Supplementary Materials for further details), the model
was retrained on the whole dataset, and a K-means clustering on the
latent representations generated by the VAE was performed using the
Euclidean distance metric. Importantly, these latent variables were
devoid of the clinical features and the survival outcome, preserving
their nature as a specific representation of genetic and cytogenetic
markers. To determine the optimal number of clusters k, we selected
the one maximizing the quantity:

N, min(k)

Nmax(k)

where Silh,,,, is the mean Silhouette score [26], N,,. and N,;,
are the sizes of the largest and the smallest clusters, respectively. The
rationale behind this optimization was to maximize the cluster quality,
measured by the Silhouette score, while simultaneously avoiding the
presence of excessively small or large clusters.

Once the optimal clustering was determined, survival curves were
then generated to evaluate the clinical validity of these clusters, and
gene mutation frequencies were examined to understand the underlying
genetic and cytogenetic landscape.

Oy = Silh,,q, (k) *

3. Results

VAE-Surv’s performance assessment focused on both the accuracy
of survival predictions and the quality of the genetic-based clusters.

3.1. VAE-surv prediction performance

The results of the survival predictions on the cross-validation sets
are summarized in Table 1. The performance of the VAE-Surv model
was systematically compared against widely adopted state-of-the-art
survival analysis methods. Specifically, we benchmarked it against
Cox Proportional Hazards regression models, implemented with vari-
ous regularization strategies, including no regularization, Lasso (L1),
Ridge (L2), and ElasticNet penalties [25]. Finally, the Survival Cluster
Analysis (SCA) [4] framework was also employed as a baseline for
comparative evaluation. It is important to highlight that none of these
methods provides the capability to treat genetic and cytogenetic data
independently of clinical and demographic information.

Table 1
Comparison of models’ performance in terms of median C-Index and Confidence
Intervals, evaluated in the 10-folds CV splits.

Median C-Index

95% CI

CoxPH 0.754 (0.726,0.784)
CoxPH - L2 0.754 (0.729,0.785)
CoxPH - L1 0.775 (0.745,0.796)
Elastic-Net 0.775 (0.745,0.796)
SCA 0.744 (0.725,0.758)
VAE-Surv w/ KL 0.751 (0.719,0.767)
VAE-Surv w/o KL 0.780 (0.747,0.790)

Computer Methods and Programs in Biomedicine 261 (2025) 108605

Among all comparisons, VAE-Surv consistently achieved either su-
perior (p = 0.01 vs. SCA, Wilcoxon Rank Sum Test) or comparable
(p > 0.16 vs. all Cox models, Wilcoxon Rank Sum Test) median C-
Index scores, highlighting its robust predictive accuracy for survival
outcomes. Notably, excluding the KL-term from the VAE loss function
improves the performance. The effect of the KL-term on the learned
latent space is clearly visible from Figure S4 in the Supplementary
Materials. Furthermore, in order to assess the reliability of the survival
predictions obtained from VAE-Surv, we divided the predicted risk
scores into 3 risk groups based on percentiles (Low, Medium and High
risk) and plotted the corresponding Kaplan-Meier curves (see Fig. 2).
A pairwise log-rank test revealed that the survival distributions of the
three groups are statistically different, with all the p-values < 0.005.

1.0 Risk Groups

0.8

0.6

Est. probability of survival §(t)

0.2

0.0

Time t

Fig. 2. Kaplan-Meier curves stratified by risk groups based on percentiles.

Additionally, we assessed whether the dimensionality reduction of
genetic features applied by the VAE module provides a significant
advantage in the prediction performance over other linear encoding
representations of the input data. Therefore, we applied a Principal
Component Analysis (PCA) to the raw input genetic data. We then con-
catenated the first two principal components (explained variance: 21%
and 15%) with the clinical covariates. This concatenated vector was
subsequently used to train the CoxPH models. VAE-Surv consistently
exhibited a higher C-Index with respect to the combination of a PCA
followed by a CoxPH model (Fig. 3).

P

. 0.76
()
©
<
0.72
0.70
o] o o ]
VAE-Surv CoxPH CoxPH-L2 CoxPH-L1  Elasticnet
(PCA+clin) (PCA+clin) (PCA+clin) (PCA+clin)
Model

Fig. 3. Comparison of VAE-Surv and CoxPH models using PCA-reduced genetic features
and clinical covariates.
This comparative analysis supports the ability of VAE-Surv frame-

work in providing consistent survival risk predictions, outperform-
ing a combination of traditional linear approaches, especially when
high-dimensional genetic and cytogenetic data are considered.
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]
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Fig. 4. Left panel: t-SNE representation of the patients’ genetic and cytogenetic latent space learned from VAE, colored according to the cluster assignment. Right panel: Kaplan—-Meier
survival curves stratified by the identified cluster. The size of each group is specified in the legend.

3.2. VAE-surv latent representation and clustering performance

The dimensionality of z was optimized as a hyperparameter of the
model and fixed to z,;,, = 7. We employed K-means clustering on the z
space to explore the utility of the latent representation created by the
VAE. The optimal number of clusters was determined according to the
quality metric Q,. As shown in Supplementary Figure S1, the optimal
configuration that ensures the maximum efficiency is when k = 9.

A t-SNE visualization of the latent representation points, colored
by the assigned cluster, is displayed in Fig. 4, left panel. The Kaplan—
Meier survival curves (Fig. 4, right panel) reveal distinct survival
profiles, thereby validating that the clusters obtained from the latent
space (whose creation was not survival-informed) provide meaningful
stratification of patients’ survival.

Table 2

Performance comparison including K-modes clustering on the input space, Survival
Cluster Analysis, and K-means clustering on the latent representations learned by VAE-
Surv.

k (o] Silhouette
K-modes on input space 3 0.041 0.15
Survival Cluster Analysis 3 0.035 0.26
K-means on VAE latent space 9 0.046 0.32

To evaluate the effectiveness of the clustering on the VAE-Surv la-
tent space, we compared the K-means with two alternative methods: (1)
K-modes clustering, applied directly to the raw genetic and cytogenetic
data, and (2) the Survival Cluster Analysis (SCA) framework [4], which
integrates survival data into its clustering process. For both approaches,
the optimal number of clusters was k = 3 according to the predefined
quality metrics Q, (Supplementary Figures S2, S3). As summarized in
Table 2, K-means clustering on the VAE-Surv latent space outperformed
both K-modes and SCA in terms of both Silhouette score and O, metric.
Despite SCA integrates survival data into the clustering process, its
lower performance compared to VAE-surv indicates that it does not
leverage genetic and cytogenetic data as effectively as the VAE-Surv
latent representation.

3.3. Biological consistency of the MDS clusters

To investigate the biological consistency of the clusters defined by
the genetic and cytogenetic features, we focused both on the distri-
bution of MDS subtypes within the clusters and on the mutational
profiling of each group. Supplementary Figures S6 and S7 show the
number of mutations observed and the median values of the most
relevant clinical attributes per cluster, respectively.

The clustermap reported in Fig. 5 and the Sankey plot displayed
in Supplementary Figure S8 compare the identified clusters with the
state-of-the-art MDS subtypes from WHO 2016 classification, based

on both genetic and clinical features (including morphological criteria
and haematologic parameters). The color intensity in each cell of the
clustermap correlates with the percentage of patients in a given cluster
belonging to a specific MDS subtype. While the clustermap explains the
composition of each cluster according to the WHO MDS classification,
the Sankey plot highlights how the MDS subtypes are distributed across
all the new groups.

Focusing on each cluster, we found that cluster 6 collects patients
with both subtypes of MDS with Ring Sideroblasts (RS-MLD and RS-
SLD), which are not significantly present in the other clusters, as
can also be noticed in the Sankey plot. Cluster 2 has a composite
characterization, including Excess Blasts-1 (EB1), Excess Blasts-2 (EB2)
and MDS with deletions in the long arm of chromosome 5 (5Q-)
subtypes. It is worth highlighting that the MDS subtypes EB2, EB1 and
the multilineage dysplasia (MLD) are spread across the clusters, with
clusters 8, 3 and 9 mainly represented by these classes, respectively
(Fig. 5). Therefore, it seems that some subtypes from WHO-based
classification can be explained by potential subgroups identified by
VAE-Surv. Indeed, focusing on the mutational landscape, the VAE-
Surv clusters are represented by different underlying genetic features.
Clusters 1, 6, 4, 8, 5 and 3 are strongly characterized by ASXL1, SF3B1,
DNMT3 A, RUNX1, Gainofchr8 and Lossofchr7ordel7q alterations, re-
spectively, as displayed in Fig. 6(a). This clustermap associates each
identified cluster with the frequency of mutated genes or cytogenetic
alterations in that cluster. Cluster 7 shows higher frequencies of SRSF2
and TET2 gene mutation with respect to the other groups, while

- MDS-EB2

MDS 5Q-

- MDS-EB1

MDS-MLD

MDS WHO subtypes

0.0095  0.02 MDS-SLD

0.04 0.019  0.078 | MDS-RS-MLD

0033 . o1

0.013 0.023 0.073 0.013 FTIEEEIN]

Clusters

Fig. 5. Clustermap showing the distribution of WHO 2016-defined MDS subtypes (y-
axis) within each of the nine clusters identified (x-axis). Each column sums to 1. The
color intensity correlates with the percentage of patients in a given cluster belonging
to a specific MDS subtype.
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VAE-Surv latent space clustering - Genetic and cytogenetic mutations

Frequency

l].n

0.8

Clusters

0.6

Frequency

.10

0.8

Clusters

0.6

(b)

Fig. 6. Clustermaps displaying the frequency of gene mutations and cytogenetic
alterations within each identified cluster. The color intensity corresponds to the preva-
lence of each genetic feature in the clusters, providing insights into their mutational
landscape. Panels (a) and (b) show the results from clustering on the VAE latent space
and on the input space, respectively.

cluster 2 is enriched with del5q, TP53 and Lossofchr5ordel5qPLUSother
alterations. Notably, TP53 mutation is also frequent in cluster 3 (which
is strongly defined by the Lossofchr7ordel7q alteration). In particular,
it is worth highlighting that patients belonging to cluster 6, character-
ized by augmented SF3B1 gene mutations, exhibit improved survival
outcomes, which is in agreement with the literature [27,28]; while
patients from clusters 3, 5 and 8, which are associated respectively with
Lossofchr7ordel7q, Gainofchr8 and RUNX1 mutations, exhibit poor
survival outcomes. An intriguing insight emerging from our clustering
approach lies in the distribution of patients within the ’5Q-’ subtype
according to WHO 2016 MDS classification. These patients are mostly
shared between clusters 2 (71%) and 6 (24%) and, despite sharing
the same ’5Q-’ classification, the survival outcomes differ markedly.
This divergence underscores the clinical utility of our model, offering
a more nuanced stratification of the patients. Cluster 9 exhibits a flat
mutational pattern, thus representing patients with a limited number of
mutations. Indeed, as shown in Supplementary Figure S6, all patients
with no mutations belong to this cluster. As expected, since cluster 9
includes patients with low mutation frequencies, they exhibit higher
survival probabilities.

Finally, to further validate the biological relevance of the clustering
methods, we analyzed the genetic mutational landscape within each
cluster obtained by directly applying the clustering to the genetic input
data, as done previously (Fig. 6(b)). In this case, since the optimal num-
ber of clusters k is 3, there is less differentiation in the prevalence of
specific mutations compared to the VAE-Surv clusters. Indeed, cluster 2,
which contains the vast majority of samples (1,230 patients, compared
to 363 and 450 in cluster 1 and 3, respectively) fails to capture the
intricate genetic and cytogenetic heterogeneity of the disease, which
could be observed in a more granular way through the VAE-Surv
approach. This suggests that the traditional clustering method is less
effective at capturing the genetic diversity of MDS patients.
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Table 3
Logistic Regression average performance for the cluster assignment task on the 100-
times repeated internal test sets.

Mean Standard Deviation
Accuracy 0.995 0.004
MCC 0.994 0.005

4. Validation in the external cohort

To validate our framework, the VAE-Surv model was retrained
on the entire GenoMed4all dataset, using the best hyperparameters
optimized with the 10-fold cross-validation strategy. We then applied
the model to the IWG-PW cohort, characterized by a censoring rate of
52% and a mean patients’ overall survival time of 32.1 months. In order
to perform a fair comparison of the results, the final model was tested
using a bootstrap with resample technique, repeated 1,000 times and
ensuring that, for each repetition, the censoring rate matched exactly
that one of the training cohort (71.1%). The resulting median C-Index
was equal to 0.74 (Standard Deviation = 0.01). Further details of the
performance on the validation cohort are reported in Supplementary
Materials (Sections S7, S8).

Then, a Logistic Regression classifier was trained on the latent
space representation of the GenoMed4all patients and applied to the
IWG-PW cohort to assign its patients to the previously defined genetic
clusters. The performance of the classifier was assessed by creating
random internal test sets within the training cohort and repeating the
random split 100 times for statistical consistency. The results in terms
of accuracy and Matthew’s Correlation Coefficients are reported in
Table 3. The latent representation of the training and validation cohorts
are shown in Supplementary Figure S10.

Finally, we compared the interpretability of the results obtained
from the survival models of VAE-Surv applied to both Genomed4all and
IWG-PM cohorts. To this aim, we estimated the SHAP values, which
quantify the contribution of each feature to the model’s prediction for
an individual patient’s overall survival outcome, i.e. the relative risk.
Originating from cooperative game theory, SHAP values are based on
the Shapley values, which assign a fair distribution of the ‘payout’
(prediction effect) among the ‘players’ (features) [29]. By integrating
SHAP with our VAE-Surv model, we can dissect the nonlinear, com-
plex interactions captured by the deep learning architecture, providing
insights into how specific genetic and clinical variables influence the
survival predictions.

The Shapley values were calculated for the model retrained on
the entire GenoMed4all cohort. Summary plots for the top-15 ranked
features according to SHAP are shown in Supplementary Figures S11
and S12 for training and validation cohorts, respectively. It is possible
to observe a consistency of the main clinical/genetic features involved
in both models, confirming the reproducibility and generalizability of
the results in different patients’ cohorts.

5. Discussion

This study provides a robust computational framework for patient
stratification in Myelodysplastic Syndromes (MDS) by integrating a
Variational Autoencoder (VAE) with a DeepSurv model. The framework
outperformed traditional CoxPH models in survival prediction tasks,
showing that deep learning can add value to clinically characterize
complex diseases like MDS.

The proposed model effectively exploits the rich genetic and cyto-
genetic landscape of MDS for feature extraction and subsequent risk
stratification. The latent representations obtained by the VAE served
as an informative summary of the genetic landscape, increasing the
granularity of our survival model. The removal of the KL-term in the
VAE loss function allowed a local interpretation of the feature space,
helping to capture the inherent heterogeneity of the disease.
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The application of K-means clustering on the latent space identified
distinct patient groups, each with unique genetic and clinical character-
istics. The visualization of these clusters in relation to WHO 2016 MDS
subtypes indicates that our framework is capable of capturing existing
clinical categorizations while also suggesting novel, data-driven patient
groups. Indeed, according to the modern oncological view, WHO 2016
MDS classification is considered too coarse as it groups genetically
different cancer subtypes into the same class [15,30,31]. VAE-Surv was
able to refine WHO classification, and the non-uniform distribution of
MDS subtypes across the new clusters implies that the model recognizes
both well-defined and less-recognized patients’ subgroups, potentially
facilitating individualized treatment strategies. In contrast, we found
that the direct clustering of the raw input genetic data reduces the
number of cancer type classes to only 3, thus highlighting its inability
to capture subtle distinctions in the input space. Furthermore, we also
characterized the mutational landscape within each cluster, providing
a more specific understanding of genetic factors driving different MDS
subtypes.

Regarding the limitations of our study, its retrospective nature
represents the primary limitation, including the potential for selection
bias inherent in a single cohort and the high heterogeneity of the
disease under investigation. To address these limitations, the model was
validated in a second large cohort of patients. When comparing the two
cohorts, the presence of significant differences, particularly in the WHO
categories and risk classes, further highlights the heterogeneity of the
disease under investigation. At the same time, these differences suggest
the potential to generalize the findings to patients with characteristics
distinct from those of the training cohort.

On the external validation cohort, consisting of 2,384 patients [18],
VAE-Surv model performance resulted in an average C-Index equal to
0.74 and a cluster assignment accuracy of 0.995. These scores display
the robustness and consistency of the model. Moreover, as shown by
the SHAP analysis, the features that contribute most to the model’s
prediction are almost the same on both training and validation cohorts.

Finally, our findings align well with the previous results [15].
In particular, our analysis confirmed the pivotal role of gene SF3B1
mutation in improving the outcome and markedly characterizing a
specific group of patients. In both works, patients with a flat mu-
tational pattern fall into a well-defined cluster whose survival rate
is higher than the average. The association of TP53 mutation with
complex karyotypes, as highlighted by Bersanelli et al., is confirmed.
However, our analysis delineates that this gene is related to extremely
poor survival outcomes only when combined with Lossofchr7ordel7q
(cluster 3), and not in cluster 2, where it co-occurs with del5q and
Lossofchr5ordel5qPLUSother alterations.

6. Conclusion and future work

In summary, VAE-Surv framework demonstrates the power of deep
learning in handling the intricate genetic landscape of MDS, offering
a novel, robust methodology for patient stratification and survival
prediction. It stands to contribute significantly to personalized medicine
in the context of haematologic disorders, facilitating more accurate
diagnosis and tailored treatment plans for MDS patients.

In future works, the integration with additional omics data like
transcriptomics or epigenetics could be easily embodied in the model,
hopefully providing a more comprehensive view of the disease. More-
over, the VAE-Surv architecture is not limited to the MDS case study.
The tool can be extended to the study of other haematologic or even
solid tumour malignancies where both clinical and genetic mutations
data are available. By retraining the model on different disease-specific
datasets, clinicians and researchers could gain similarly actionable
insights for patient stratification and survival prediction across a wider
array of conditions.
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