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Rare germline pathogenic variants (GPVs) in genes essential 
for telomere length maintenance (TLM) and function cause 
a broad spectrum of disorders. The biological consequences 
of these GPVs range from short or dysfunctional telomeres 
and reduced cellular replicative potential to long telomeres 
and increased cellular replicative capacity.

DYSK ER ATOSIS CONGE N ITA WAS 
TH E FIR ST DISOR DER TO LI N K 
GER M LI N E GE N ETIC S ,  TE LOM ER E 
DYSFU NC TION A N D H U M A N 
DISE ASE

X- linked recessive GPVs in DKC1 were the first identified 
connection between dyskeratosis congenita (DC) and very 
short telomeres, making DC the prototypic telomere biology 

disorder (TBD).1,2 DC is diagnosed clinically by the mucocu-
taneous triad of oral leukoplakia, nail dysplasia and abnor-
mal skin pigmentation or the presence of two of the triad 
and bone marrow failure.3 Individuals with DC are also at 
high risk of pulmonary fibrosis, acute myeloid leukaemia, 
myelodysplastic syndrome, head and neck squamous cell 
carcinoma (HNSCC), cryptogenic liver disease, oesophageal 
and lacrimal duct stenosis and avascular necrosis, among 
other complications.4–8

TBDs A R E A SPECIFIC SPEC TRU M OF 
IL L N E SSE S CAUSED BY TE LOM ER E 
DYSFU NC TION

Several subtypes of TBDs present early in childhood and 
are caused by GPVs in the same genes as DC. Features of 
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Summary
Rare germline pathogenic variants (GPVs) in genes essential in telomere length main-
tenance and function have been implicated in two broad classes of human disease. 
The telomere biology disorders (TBDs) are a spectrum of life- threatening conditions, 
including bone marrow failure, liver and lung disease, cancer and other complica-
tions caused by GPVs in telomere maintenance genes that result in short and/or dys-
functional telomeres and reduced cellular replicative capacity. In contrast, cancer 
predisposition with long telomeres (CPLT) is a disorder associated with elevated risk 
of a variety of cancers, primarily melanoma, thyroid cancer, sarcoma, glioma and 
lymphoproliferative neoplasms caused by GPVs in shelterin complex genes that lead 
to excessive telomere elongation and increased cellular replicative capacity. While 
telomeres are at the root of both disorders, the term TBD is used to convey the clini-
cal phenotypes driven by critically short or otherwise dysfunctional telomeres and 
their biological consequences.
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Hoyeraal–Hreidarsson syndrome include cerebellar hy-
poplasia, immunodeficiency and intrauterine growth re-
striction. Bilateral exudative retinopathy, intracranial 
calcifications and intrauterine growth restriction are fea-
tures of Revesz syndrome and Coats plus.9–11 Additionally, 
individuals with Coats plus typically have cerebral cysts, a 
tendency to fractures and telangiectasia- associated gastroin-
testinal bleeding.10

The identification of GPVs in TLM genes in individ-
uals and families with only one or two clinical or overt 
features of DC (e.g. pulmonary fibrosis) and the develop-
ment of lymphocyte telomere length (TL) measurement as 
a diagnostic test led to the recognition of variable pene-
trance and expressivity and the term ‘telomere biology 
disorder’.12 Individuals with TBDs generally have median 
lymphocyte TL <10th percentile for age, with the short-
est telomeres (<1st percentile) correlating with earlier age 
at onset, autosomal or X- linked recessive or heterozygous 
TINF2 PGVs.6,13 GPVs in >17 genes are associated with 
TBDs.4–8

TBD PH E NOT Y PE S R E SU LT FROM 
LI M ITED STE M CE L L R E N EWA L 
I N DUCED BY CR ITICA L LY SHORT 
TE LOM ER E S

Telomeres consist of kilobase pairs of TTAGGG repeats at 
chromosome ends coated with a six- protein complex called 
shelterin. They are essential for maintaining chromosomal 
integrity yet shorten with each cell division in cells lacking or 
with limited levels of telomerase (most human somatic cells). 
Cellular senescence or apoptosis is triggered when telomeres 
reach a critically short length (the Hayflick limit). The mech-
anisms causing short telomeres vary in TBDs.14 In individu-
als without TBDs, in addition to age, telomere shortening 
is associated with oxidative stress such as from smoking or 
other lifestyle factors.15 GPVs in components of the telom-
erase complex or proteins involved in the maturation of the 
telomerase RNA subunit compromise telomerase catalytic 
activity, thereby reducing the extension of TTAGGG repeats. 
Without affecting telomerase activity per se, GPVs in factors 
required for telomerase trafficking within the nucleus or its 
recruitment to telomeres also reduce TL. Alternatively, GPVs 
may impact factors required for telomere stability by impair-
ing telomere replication. For TINF2 exon 6 GPVs, the precise 
molecular mechanism causing extremely short telomeres re-
mains incompletely understood.

SOM E TBDs H AV E TE LOM ER E 
I NSTA BILIT Y W ITHOU T GLOBA L LY 
SHORT TE LOM ER E S

TBDs may result from GPVs in the shelterin component 
POT1 that alters the fill- in step of replication at the 
telomeric end, resulting in dysregulated telomere elongation, 

instability and stochastic truncations.14 Biallelic GPVs in 
CTC1 and STN1 similarly affect the structure of the telomere 
end and telomere stability, whereas those in DCLRE1B do so 
via a different mechanism.16

A DISTI NC T SET OF CA NCER- PRON E 
I N H ER ITED DISOR DER S H AV E LONG 
TE LOM ER E S

At the opposite end of the TL range are cancer- prone disor-
ders caused by GPVs in some of the same genes as the TBDs 
but associated with TL >90th percentile for age, without 
typical TBD- related clinical features and with different ef-
fects on telomeres.15 The first discovery of such GPVs were in 
POT1 and associated with long telomeres in familial mela-
noma.17,18 Subsequent studies added glioma, angiosarcoma 
(mainly cardiac) and chronic lymphocytic leukaemia to the 
cancer spectrum, leading to the designation of ‘POT1 tu-
mour predisposition (TPD)’ as a specific syndrome.19 Other 
sarcomas, thyroid cancer, Hodgkin lymphoma, myeloid ma-
lignancies and clonal haematopoiesis have been suggested 
part of the POT1- TPD spectrum.15,20,21

GPVs in shelterin components, ACD, TERF2IP, TINF2 
and TERF1, have also been associated with long telomeres 
and cancers seen in POT1- TPD. To date, GPVs in TERF2, 
the sixth shelterin protein, have not been described. ACD 
or TERF2IP GPVs are associated with familial melanoma.15 
TINF2 GPVs were identified in individuals from cancer- 
prone families, including papillary thyroid cancer and mul-
tiple primary melanoma.15,22 The association of sarcoma 
with shelterin proteins has also expanded to include TERF1, 
TERF2IP and TINF2.15 Notably, although some of the genes 
with long telomere- GPVs are among those associated with 
TBDs, none of the individuals with shelterin complex 
GPVs and long telomeres have been reported to have TBD 
phenotypes.

LONG TE LOM ER E S CON FER A 
GR E ATER R EPLICATI V E CA PACIT Y 
SI NCE MOR E CE L L DI V ISIONS 
A R E N E EDED BEFOR E TE LOM ER E S 
R E ACH A CR ITICA L LY SHORT 
L E NGTH A N D TR IGGER A POP TOSIS 
OR SE N E SCE NCE

Cells with engineered heterozygous POT1 or TINF2 vari-
ants associated with familial cancer have excessive telomere 
elongation yet lack a defect in telomere end protection.23,24 
One reported mechanism is that POT1 mutations weaken its 
interaction at the telomere, allowing for more telomerase ac-
cess and telomere lengthening. Thus, the increased risk of 
cancer conferred by this class of variants is proposed to be 
via the greater proliferative capacity endowed by the long tel-
omeres, increasing the population of cells that may acquire 
mutations to drive cancer progression over time.
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W E PROPOSE USI NG TH E TER M 
‘CA NCER PR EDISPOSITION W ITH 
LONG TE LOM ER E S (CPLT)’  TO 
DEFI N E TH E CON DITION CAUSED 
BY GPVs I N TE LOM ER E BIOLOGY 
GE N E S ,  TO DATE PR I M A R I LY I N TH E 
SH E LTER I N COM PL E X, ASSOCI ATE D 
W ITH LONGER- TH A N- AV ER AGE 
FU NC TIONA L TE LOM ER E S

This distinction from TBDs is important because CPLT is 
not associated with typical TBD clinical manifestations but 
with a distinct set of malignancies.

TH E TER M TBD IS USED TO R EFER 
TO TH E CON DITIONS TH AT 
M A N IFE ST I N I N DI V IDUA L S 
W ITH A BNOR M A L LY SHORT OR 
OTH ERW ISE DYSFU NC TIONA L 
TE LOM ER E S

These conditions include the mucocutaneous triad of DC, 
bone marrow failure, pulmonary fibrosis, liver disease, 
HNSCC and additional features related to limited cell re-
newal capacity provoked by their telomeres. While most 
TBD- associated GPVs result in very short telomeres, some 
variants cause clinically significant telomere dysfunction 
in the context of TLs within the normal range; hence, short 
telomere syndromes as an alternative falls short as an all- 
inclusive term, and we support the continued inclusion of 
biology in the TBD name.

U NA NSW ER ED QU E STIONS FOR TH E 
FIE L D I NCLU DE

• Do common germline variants mediate TBD or CPLT 
phenotypes? Genome- wide association studies of telo-
mere length in large population- based studies have 
identified numerous single nucleotide polymorphisms 
associated with telomere length and allowed for the cre-
ation of polygenic scores.25 These have not been stud-
ied in individuals with highly penetrant TBD or CPLT 
germline variants but could contribute to phenotypic 
heterogeneity.

• How do somatic mutations affect phenotypes and out-
comes? Limited studies suggest that somatic mutations 
in blood of individuals with TBDs is associated with hae-
matopoietic rescue and with progression to MDS.21,26–29 
Additional large, longitudinal studies are required to un-
derstand the clinical consequences and to develop preci-
sion management approaches.

• What are the biological consequences of rare germline 
variants in TBDs and CPLT? Most of the variants in 
genes associated with TBDs and CPLTs have had limited 
studies of the biological consequences. Comprehensive 

functional studies focused on disease- associated vari-
ants are required to thoroughly understand geno-
type–phenotype relationships and to improve clinical 
management. For some genes, such as TERT, in which 
a large proportion of the variants detected in patients 
are novel and classified as variants of uncertain sig-
nificance, saturation mutagenesis approaches may be 
needed to broadly impact patient care.
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